Copied to
clipboard

G = C324D9order 162 = 2·34

2nd semidirect product of C32 and D9 acting via D9/C9=C2

metabelian, supersoluble, monomial, A-group

Aliases: C324D9, C33.7S3, C9⋊(C3⋊S3), C3⋊(C9⋊S3), (C3×C9)⋊11S3, (C32×C9)⋊5C2, C3.(C33⋊C2), C32.10(C3⋊S3), SmallGroup(162,45)

Series: Derived Chief Lower central Upper central

C1C32×C9 — C324D9
C1C3C32C33C32×C9 — C324D9
C32×C9 — C324D9
C1

Generators and relations for C324D9
 G = < a,b,c,d | a3=b3=c9=d2=1, ab=ba, ac=ca, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 720 in 100 conjugacy classes, 51 normal (5 characteristic)
C1, C2, C3, C3, S3, C9, C32, D9, C3⋊S3, C3×C9, C33, C9⋊S3, C33⋊C2, C32×C9, C324D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, C33⋊C2, C324D9

Smallest permutation representation of C324D9
On 81 points
Generators in S81
(1 25 47)(2 26 48)(3 27 49)(4 19 50)(5 20 51)(6 21 52)(7 22 53)(8 23 54)(9 24 46)(10 37 67)(11 38 68)(12 39 69)(13 40 70)(14 41 71)(15 42 72)(16 43 64)(17 44 65)(18 45 66)(28 77 58)(29 78 59)(30 79 60)(31 80 61)(32 81 62)(33 73 63)(34 74 55)(35 75 56)(36 76 57)
(1 77 68)(2 78 69)(3 79 70)(4 80 71)(5 81 72)(6 73 64)(7 74 65)(8 75 66)(9 76 67)(10 24 57)(11 25 58)(12 26 59)(13 27 60)(14 19 61)(15 20 62)(16 21 63)(17 22 55)(18 23 56)(28 38 47)(29 39 48)(30 40 49)(31 41 50)(32 42 51)(33 43 52)(34 44 53)(35 45 54)(36 37 46)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 9)(2 8)(3 7)(4 6)(10 28)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 54)(27 53)(37 58)(38 57)(39 56)(40 55)(41 63)(42 62)(43 61)(44 60)(45 59)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)(72 81)

G:=sub<Sym(81)| (1,25,47)(2,26,48)(3,27,49)(4,19,50)(5,20,51)(6,21,52)(7,22,53)(8,23,54)(9,24,46)(10,37,67)(11,38,68)(12,39,69)(13,40,70)(14,41,71)(15,42,72)(16,43,64)(17,44,65)(18,45,66)(28,77,58)(29,78,59)(30,79,60)(31,80,61)(32,81,62)(33,73,63)(34,74,55)(35,75,56)(36,76,57), (1,77,68)(2,78,69)(3,79,70)(4,80,71)(5,81,72)(6,73,64)(7,74,65)(8,75,66)(9,76,67)(10,24,57)(11,25,58)(12,26,59)(13,27,60)(14,19,61)(15,20,62)(16,21,63)(17,22,55)(18,23,56)(28,38,47)(29,39,48)(30,40,49)(31,41,50)(32,42,51)(33,43,52)(34,44,53)(35,45,54)(36,37,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,28)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53)(37,58)(38,57)(39,56)(40,55)(41,63)(42,62)(43,61)(44,60)(45,59)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(72,81)>;

G:=Group( (1,25,47)(2,26,48)(3,27,49)(4,19,50)(5,20,51)(6,21,52)(7,22,53)(8,23,54)(9,24,46)(10,37,67)(11,38,68)(12,39,69)(13,40,70)(14,41,71)(15,42,72)(16,43,64)(17,44,65)(18,45,66)(28,77,58)(29,78,59)(30,79,60)(31,80,61)(32,81,62)(33,73,63)(34,74,55)(35,75,56)(36,76,57), (1,77,68)(2,78,69)(3,79,70)(4,80,71)(5,81,72)(6,73,64)(7,74,65)(8,75,66)(9,76,67)(10,24,57)(11,25,58)(12,26,59)(13,27,60)(14,19,61)(15,20,62)(16,21,63)(17,22,55)(18,23,56)(28,38,47)(29,39,48)(30,40,49)(31,41,50)(32,42,51)(33,43,52)(34,44,53)(35,45,54)(36,37,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,28)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53)(37,58)(38,57)(39,56)(40,55)(41,63)(42,62)(43,61)(44,60)(45,59)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(72,81) );

G=PermutationGroup([[(1,25,47),(2,26,48),(3,27,49),(4,19,50),(5,20,51),(6,21,52),(7,22,53),(8,23,54),(9,24,46),(10,37,67),(11,38,68),(12,39,69),(13,40,70),(14,41,71),(15,42,72),(16,43,64),(17,44,65),(18,45,66),(28,77,58),(29,78,59),(30,79,60),(31,80,61),(32,81,62),(33,73,63),(34,74,55),(35,75,56),(36,76,57)], [(1,77,68),(2,78,69),(3,79,70),(4,80,71),(5,81,72),(6,73,64),(7,74,65),(8,75,66),(9,76,67),(10,24,57),(11,25,58),(12,26,59),(13,27,60),(14,19,61),(15,20,62),(16,21,63),(17,22,55),(18,23,56),(28,38,47),(29,39,48),(30,40,49),(31,41,50),(32,42,51),(33,43,52),(34,44,53),(35,45,54),(36,37,46)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,9),(2,8),(3,7),(4,6),(10,28),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,54),(27,53),(37,58),(38,57),(39,56),(40,55),(41,63),(42,62),(43,61),(44,60),(45,59),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73),(72,81)]])

C324D9 is a maximal subgroup of
D9×C3⋊S3  S3×C9⋊S3  He3⋊D9  C33⋊D9  He33D9  C9⋊He32C2  (C32×C9)⋊C6  C324D9⋊C3  He3⋊C33S3  C3≀C3.S3  C928S3  C324D27  C34.11S3  C9○He33S3  C339D9
C324D9 is a maximal quotient of
C325Dic9  C928S3  C336D9  He34D9  C324D27  C339D9

42 conjugacy classes

class 1  2 3A···3M9A···9AA
order123···39···9
size1812···22···2

42 irreducible representations

dim11222
type+++++
imageC1C2S3S3D9
kernelC324D9C32×C9C3×C9C33C32
# reps1112127

Matrix representation of C324D9 in GL6(𝔽19)

18180000
100000
000100
00181800
000010
000001
,
010000
18180000
000100
00181800
0000181
0000180
,
18180000
100000
001000
000100
0000177
0000125
,
18180000
010000
0018000
001100
00001417
0000125

G:=sub<GL(6,GF(19))| [18,1,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,18,18,0,0,0,0,1,0],[18,1,0,0,0,0,18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,12,0,0,0,0,7,5],[18,0,0,0,0,0,18,1,0,0,0,0,0,0,18,1,0,0,0,0,0,1,0,0,0,0,0,0,14,12,0,0,0,0,17,5] >;

C324D9 in GAP, Magma, Sage, TeX

C_3^2\rtimes_4D_9
% in TeX

G:=Group("C3^2:4D9");
// GroupNames label

G:=SmallGroup(162,45);
// by ID

G=gap.SmallGroup(162,45);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,581,546,182,723,2704]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^9=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽